Multisource Single-Tree Inventory in the Prediction of Tree Quality Variables and Logging Recoveries
نویسندگان
چکیده
The stem diameter distribution, stem form and quality information must be measured as accurately as possible to optimize cutting. For a detailed measurement of the stands, we developed and demonstrated the use of a multisource single-tree inventory (MS-STI). The two major bottlenecks in the current airborne laser scanning (ALS)-based single-tree-level inventory, tree detection and tree species recognition, are avoided in MS-STI. In addition to airborne 3D data, such as ALS, MS-STI requires an existing tree map with tree species information as the input information. In operational forest management, tree mapping would be carried out after or during the first thinning. It should be highlighted that the tree map is a challenging prerequisite, but that the recent development in mobile 2D and 3D laser scanning indicates that the solution is within reach. In our study, the tested input tree map was produced by terrestrial laser scanning (TLS) and by using a Global Navigation Satellite System. Predictors for tree quality OPEN ACCESS Remote Sens. 2014, 6 3476 attributes were extracted from ALS data or digital stereo imagery (DSI) and used in the nearest-neighbor estimation approach. Stem distribution was compiled by summing the predicted single-tree measures. The accuracy of the MS-STI was validated using harvester data (timber assortments) and field measures (stem diameter, tree height). RMSEs for tree height, diameter, saw log volume and pulpwood volume varied from 4.2% to 5.3%, from 10.9% to 19.9%, from 28.7% to 43.5% and from 125.1% to 134.3%, respectively. Stand-level saw log recoveries differed from −2.2% to 1.3% from the harvester measurements, as the respective differences in pulpwood recovery were between −3.0% and 10.6%. We conclude that MS-STI improves the predictions of stem-diameter distributions and provides accurate estimates for tree quality variables if an accurate tree map is available.
منابع مشابه
مطالعات درخت تصمیم در برآورد ریسک ابتلا به سرطان سینه با استفاده از چند شکلیهای تک نوکلوئیدی
Abstract Introduction: Decision tree is the data mining tools to collect, accurate prediction and sift information from massive amounts of data that are used widely in the field of computational biology and bioinformatics. In bioinformatics can be predict on diseases, including breast cancer. The use of genomic data including single nucleotide polymorphisms is a very important ...
متن کاملتأثیر روشهای متفاوت برداشت چوب از جنگل بر ترکیب گونهای جامعه پرندگان جنگلی جنگل شصت کلاته، گرگان
The species composition of a bird community is dependent upon many factors. Within any geographic area, vegetation structure may be the most important factor. The changes of bird community composition based on foraging behavior in relation to 3 different harvesting systems, including strip cutting, group selection logging, and single tree selection logging, was evaluated in a virgin area in thi...
متن کاملSteel Buildings Damage Classification by damage spectrum and Decision Tree Algorithm
Results of damage prediction in buildings can be used as a useful tool for managing and decreasing seismic risk of earthquakes. In this study, damage spectrum and C4.5 decision tree algorithm were utilized for damage prediction in steel buildings during earthquakes. In order to prepare the damage spectrum, steel buildings were modeled as a single-degree-of-freedom (SDOF) system and time-history...
متن کاملSurvey of Directional Felling and Analysis of Effective Factors on Felling Error (Case Study; Iranian Caspian forests)
Economic and environmental logging is important for sustainable wood production in the Caspian forests, north of Iran. Predetermination of the skid trail network and directional felling is a usual recommended method to reduce logging impact. The aim of this study was evaluation of directional felling and finding factors effective on felling error. Totally 135 trees were selected randomly for di...
متن کاملThe assessment of the habitat preferences of the River prawn (Macrobrachium nipponens) in wetland using decision tree and generalized linear model
Four sampling sites were selected in different parts of the Anzali wetland watershed to predict the habitat preferences of the river prawn (Macrobrachium nipponens). A set of abiotic variables together with the abundance of the species were monthly measured at each sampling location during the 1- year study period (2017-2018). The results of Mann-Whitney test (given the non-normal data) showed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 6 شماره
صفحات -
تاریخ انتشار 2014